Математикам лень объяснять на языке обывателя, что такое действительное число. Обывателю трудно читать значки, написанные математиком, потому что их смысл для него не понятен. В итоге есть разрыв между теорией и практикой. В теории математики прекрасно знают, что такое типы объектов и что такое атрибуты, но, спускаясь к практике, мы видим, что мало, кто из практиков понимает, что это такое. Существует множество интуитивных понятий, но каждое из них скорее похоже на религиозную догму, нежели на знание. В данной статье я попытался ликвидировать пробел между математиками и прикладниками, объясняя основы теории множеств простым языком, без сложных значков.
В прошлой статье Моделирование конструкций. Требования к моделлеру я говорил о том, что несколько объектов, мыслимых нами как целое, существуют в нашем сознании, но не осознаются нами явно. Математики осознали это и сделали явным, введя для этого понятие множества. Я также напомнил, что понятие множество и понятие объект — аксиомы, которые невыводимы из других понятий. При этом понятие объект для нас привычно, и мы имеем достаточный опыт, чтобы работать с ними, а вот со множеством мы знакомимся в институте при изучении основ математики, и представление о них не столь очевидно. Для тех, кто ищет возможность научиться представлять множество более ясно, я рассказал, где мы можем найти хороший образ – в представлении конструкций. В этой статье я продолжу рассказ про множества, и расскажу, что такое тип и атрибут с точки зрения теории множеств. И самое главное – я расскажу, как эти понятия находят свое отражение в моделях, которые мы строим. |