Для 11-х классов.
Всем привет! Я снова буду рассказывать о геоинформационных технологиях. Этой статьей я начинаю серию о технологиях на стыке миров классических ГИС и все еще модного направления BigData. Я расскажу о ключевых особенностях применения распределенных вычислений к работе с геоданными, а также сделаю краткий обзор существующих инструментов.
Сегодня нас окружает огромное количество неструктурированных данных, которые до недавнего времени было немыслимо обработать. Примером таких данных могут служить, например, данные метеодатчиков, используемые для точного прогноза погоды. Более структурированные, но не менее массивные датасеты – это, например, спутниковые снимки (алгоритмам обработки снимков c помощью машинного обучения даже посвящен ряд статей у сообщества OpenDataScience). Набор снимков высокого разрешения, допустим, на всю Россию занимает несколько петабайт данных. Или история правок OpenStreetMap — это терабайт xml. Или данные лазерного сканирования. Наконец, данные с огромного количество датчиков, которыми обвешано множество техники – от дронов до тракторов (да, я про IoT). Более того, в цифровую эпоху мы сами создаем данные, многие из которых содержат в себе информацию о местоположении. Мобильная связь, приложения на смартфонах, кредитные карты – все это создает наш цифровой портрет в пространстве. Множества этих портретов создают поистине монструозные наборы неструктурированных данных. |