Изучая иностранную литературу, на днях наткнулся на работы [1, 2] профессора Мичиганского университета Дивакара Вишваната (Divakar Viswanath) об итерационном алгоритме вычисления периодических орбит динамических систем, основанном на методе Линдштедта-Пуанкаре (ЛП) (для ознакомления с ним рекомендую книгу [3, с. 408-411]). Преимуществом данного метода является то, что он не требует численного интегрирования дифференциального уравнения, поэтому может быть применён к построению и неустойчивых циклов.
На сегодняшний день в математике одно из популярных направлений исследований — это теория динамического хаоса. Самым известным объектом здесь является система Лоренца, введённая в 60-е годы 20-ого века. Отмечу, что с того времени появилось много нелинейных математических моделей, где имеет место хаотическое поведение решений, в различных областях науки. Несколько лет назад получили популярность хаотические системы без положений равновесия, применяемые для шифрования сигналов (см., например, [4]). Тем, кто только начинает заниматься теорией хаоса, советую посмотреть математический фильм ХАОС, состоящий из девяти глав.
Уорвик Такер (Warwick Tucker) в работе [5] доказал существование периодических решений в аттракторе Лоренца, но убедительных доказательств найденных циклов в численных экспериментах авторов различных статей мне не удавалось найти. |