Когда в начале 1990-х Эндрю Джон Уайлс доказал Великую теорему Ферма, это стало монументальным шагом не только для математиков, но и для всего человечества. Формулировка теоремы очень проста – она утверждает, что у уравнения xn + yn = zn нет целых положительных решений при n > 2. Однако это простое заявление привлекало огромное количество желающих доказать его более 350 лет, с тех пор, как французский математик Пьер де Ферма небрежно набросал формулировку теоремы в 1637 году на полях «Арифметики» Диофанта. Знаменита и формулировка Ферма: он «нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него». Столетиями профессиональные математики и энтузиасты-любители искали доказательство Ферма – или какое угодно ещё.
Доказательство, полученное в итоге Уайлсом (с помощью Ричарда Тейлора) никогда бы не пришло Ферма в голову. Оно не затрагивало теорему напрямую, а строило огромный мост, который, по мнению математиков, должен был существовать – мост между двумя отдаленными математическими «континентами». Доказательство Уайлса сводилось к определению этого моста, соединяющего два небольших клочка земли двух континентов. Доказательство было полно новых и глубоких идей, и породило каскады новых результатов по обе стороны этого моста. |